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The process of heat transfer in fibrous materials with a random struc-
ture is examined and a method is proposed for calculating the effec-
tive thermal conductivity as a function of the characteristic param-
eters of the system (thermal conductivities of the components, their
volume concentration, temperature, pressure of the interstitial gas,
etc.).

A distinctive feature of fibrous systems is the low
volume concentration of the solid component (from
20to 0.1%) and its considerable elongation (ratio of
fiber length to diameter more than 100).

Fibrous materials can be divided into three classes
according to their structure: 1) systems with a random
fiber distribution (wool, felt); 2) systems with an
ordered fiber distribution (cloths, mats); 3) combined
systems, combinations of random and ordered fiber
distribution (alternating layers of wool and cloth,
napped materials, etc.). We will examine an analytic
method of determining the effective thermal conductiv-
ity of a fibrous system with a random fiber arrange-
ment.

Fibrous system model. A realistic model is one
with a random arrangement of infinitely longcylinders.
We assume that the effective thermal conductivity of
the actual fibrous system (statistical fiber mixture)
and the effective thermal conductivity of an ordered
structure are the same if the coefficients of thermal
conductivity and the concentrations of the components
of the actual and ordered structures are the same. The
model of an ordered structure is shown in Fig, 1la.
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Fig. 1. Model of fibrous system: a) general
view of model with cylindrical fibers; b) fiber
contact; ¢) ordered system.

Consider first heat transfer in this model at the
fiber contact points 1-2 and 2—3. The contact area

Sq (Fig. 1b) between fibers is small compared with
the cross section Sy of the fibers: S¢ = 1 + 107%8¢ [1].
Accordingly, the total heat flux Q¢ through contacts

=

i
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Fig. 2. Model of fibrous system in
the form of two interpenetrating
components with square bars of
constant cross section: a) general
view of system; b) unit cell.

1-2 and 2-3 is negligibly small as compared with the
flux Qg along the fibers 3 and through the interstitial
gas Qg. This permits to simplify the model to a sys-
tem of intersecting cylinders forming a cubic space
lattice. Part of this system is shown in Fig. 1c.

Notice that replacing the cylinders with square
fibers of the same cross section will not affect much
the effective thermal conductivity of the system (Fig.
2a), although the heat-transfer analysis will be con-
siderably simplified. The model of interpenetrating
components with square bars of constant cross section
shown in Fig. 2a was investigated in [2].

The thermal conductivity A of the system is related
with the thermal conductivity A, of the fibers, the ther-
mal conductivity A, of the interstitial gas, and its
volume concentration m, as follows [2]

A=A [024_\,(1 )k 2ve(l—o) ,
ve+ (1 —o¢)
v=—, (1)
where the parameter ¢ depends on the volume con-

centration as

my = 2¢% —3c? 4- 1, (2)
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whese solution is

c=0.5+Acos—c§~, (3)
with

0<my< 0.5, A=—1, ¢=arccos(I—2m,),
0.5 m <10, A=1, ¢ = arccos (2m, — 1),
270° < ¢ < 360°.

Part of the unit cell of the system with long-range
order shown in Fig. 2a is represented in Fig. 2b. It
can be shown that ¢ = A/L where A is the thickness
of the bar, and L the height of the unit cell.

The thermal conductivity A, of the gas is determined
from the condition that the heat conduction o, of the
gas component in the unit cell should equal the sum of
molecular oy, convective oy, and radiative ooy heat
transfer

Op == Ot Oac -+ Oy (4)

If L is the dimension of the unit cell in the direc-
tion of heat flow and S is the cross-sectional area of
the cell, then

28 _ hemS |, haeS | DS

0y = = T 1 »
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whence

Ao = Agmy - }-2; -+ Aars (5)

where Mgy, Age, Agr are the molecular, convective,
and radiative components of the thermal conductivity
coefficient.

We will examine the individual components of the
thermal conductivity of the gas in greater detail.

Under natural conditions there is almost no con-
vection in the system and accordingly we can set Ay =
= 0[3]. The molecular component Ay, can differ from
the thermal conductivity A; at normal pressure H, [4]

A
mezz——’q—F‘“y
1 (
T HY
4fL
B= Cy _L2—QH0 A°° , (6)
| \ Cp Pr a c .
1+ -2 1+ —
c, T

where cp/ ¢y is the ratio of specific heats; a is an
accommodation factor; Pristhe Prandtl number under
normal conditions of pressure and temperature T; H
is the interstitial gas pressure; A, is the molecular
mean free path at high temperature; and C is the
Sutherland constant.

We define the pore dimension §' as the distance
between two solid surfaces traversed by a gas mole-
cule. The minimum value of this distance is 6] =
= 2(L = A); the maximum value is the total thickness
of the fibrous system [, i.e.,

Sy = L.

INZHENERNO-FIZICHESKII ZHURNAL
Consequently,

8 <8 < 8.

For small fiber volume concentrations the value of
&' approaches [. )

For a quantitative estimate of the effective pore
size we will consider a somewhat modified model, in
which each successive fiber in the direction of heat
flow is displaced perpendicular to the heat flow by an
amount equal to its diameter. This is equivalent to
the displacement of each successive unit cell by the
width of a bar. We believe that this model is closer
to the actual structure. For such a model 6' can be
found from

§ =2L

=2yl T
2A c* )

Equation (7) is a rough approximation.

Since the cylindrical and square cross sections are
equal, it follows that A is related to the fiber diam-
eter D by

A= Va D. (8)

Using (8), we write (7) as

. V& [l—c¢
= |

~1]D:.~_0.89D[1’—C—1]. (9)

C2

For very thin fibers, even at normal external gas
pressure, the mean free path may exceed 6'. This
should be kept in mind in determining Aym. Relations
(6) and (9) allow this effect to be taken into account.
In most cases the mean free path is much less than
the distance between fibers, i.e.,

7\42_1—“:: 7\,0.

Radiative component. Radiative heat exchange con-
stitutes a considerable fraction of the total transfer
in fibrous systems owing to the low fiber concentra~
tion. Moreover, the radiative heat exchange is affected
by the emissivity of the surfaces bounding the fibrous
system and the distance between them [5-9]. Accord-
ingly, in deriving the functional relation linking the
thermal conductivity of fibrous systems with the char-
acteristic parameters, we will consider heat transfer
not in the unit cell but across the system as a whole
with allowance for the characteristics of the bounding
surfaces. Consider a homogeneous isotropic medium
with the following integral characteristics: absorption
coefficient o, scattering coefficient o, and some ther-
mal conductivity coefficient A,. The latter takes into
account molecular heat transfer through the gas and
conductive transfer along the fibers. Assume that
there is no convective heat transfer, and that the sur-
faces of the isotropic medium are parallel and isother-
mal.

This problem was investigated by a number of
authors, in particular, for a random fibrous system
[8]. However, with this result it is not possible to
evaluate the radiative component of the effective ther-
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mal conductivity of the system without resorting to an
experimental determination of certain parameters, in
particular, the attenuation factor.

Using the general formulation of the problem and
the individual results reported in [6, 7], we will ex-
amine an analytic method of determining the attenua-
tion factor in the case of total absorption of the radia-
tion.

In the general case, the attenuation of radiation
intensity in a medium is determined by absorption and
scattering. The attenuation factor g(v) is equal to the
sum of the absorption a(r) and scattering o{v) coef-
ficients

B () =a(v) +o(v). (10)

In the case of total absorption (¢ = 0) the attenuation
factor is equal to the absorption coefficient:

B(v) = a(v).

The mechanism of heat transfer in a homogeneous
isotropic medium with zero scattering was examined
in detail in [9], where an expression was given for the
radiative component of the thermal conductivity as a
function of absorption coefficient o, the temperature
of the medium T, the thickness of the fibrous system
1, and the emissivity of the surfaces bounding the sys-
tem ¢

o 16 TV
3 a
3 2
V=12 (1 —4 _2
” [ K ()] e X
11 —3Ky(v))*
| —¢) — L TORATIT
=) 0K, @) (11)

where og is the Stefan-Boltzmann constant og = 5.67 -
. 1078 w/m? - deg;

1
= [ e[~
p u

X u—2dp, p=cos0, 1= al

Values of Y = Y (g, 7) were tabulated in [9]; a graph of
T=1{c,Y) is presented in Fig. 3.

We will find the relation between the absorption
coefficient and the geometric parameters of the fibrous
system, which we represent in the form of two inter-
penetrating components. By definition [10]

S att
B SAx’
where S;4; is the effective cross sectionofthe particles
attenuating the radiation on an area S in a layer of
thickness Ax equal to the mean distance between par-
ticles (Fig. 2b).

For the unit cell in question (Fig. 2b) the cross
section parameter in a plane perpendicular to the heat
flow is S = Lz, while Ax corresponds to the edge of the
unit cell (Ax = 1), and the attenuation surface

Sp =L —(L —A) (13)

(12)
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With (8), (4), and (13), (11) is reduced to
2 7 AN
R
. {14)
2
_ ¢ (2—¢) =2.26c (2—0),
A D

where ¢ = A/L is the parameter associated with the
gas volume concentration m, in Eq. (3).
On the basis of (10) and (14)

b (L)sy. (15)

Ay =0.134 —r~>——
c2—c) \ 100

If the attenuation depends exclusively onthe scatter-

ing (o = 0), then [6]
{ T \¢
( 100> ’ (16)

—2—~l—{—ol
&

Ay = 0.226

In most cases the scattering coefficient is deter-
mined experimentally. However, if the refractive
index of the fiber materialis known, ¢ canbe estimated
from the formula [6]

41—my) ,

U(v) = JT;D scC

, (17)

where kg is the scattering coefficient for an individual
spherical particle with refractive index n{v) equal to
the refractive index of the fiber and with diameter
equal to the fiber diameter. The scattering coefficients
for spherical particles were calculated in [11] as a
function of the complex refractive index and the rela-
tion between the particle diameter and the wavelength
of the incident radiation.

In particular, if the fiber diameter is much less
than the wavelength of the incident radiation, kg for
the given wavelength may be calculated from [12, 13]

8 (n Dv)*

3 (18)

ksc =

n?—1
n41 |
Here, n is the complex refractive index of the material.

If the fiber diameter is much greater than the wave-
length of the incident radiation, then

by =2(1+ 0.4 ) (19)
xDwv

In the event that the aitenuation is caused by both
absorption and scattering, then, if

3T —Ty)

T >
al

(20)

where Ty and T, are the temperatures of the bounding
surfaces, the following expression can be used for
the radiative component [6]:

_ 405 T3
B GENY)

(B -+o)e 4V p*—0® (2—¢)
20(l —e)+ B2+ V P2 —c%e(2—¢)

X

.(21)
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We have proposed a number of formulas for calcu-
lating the radiative components of the thermal-con-
ductivity coefficient as a function of the properties of

T
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Fig. 3. Coefficient Y as a function

of the optical path r for various

emissivities e of the bounding
surfaces.

the fibrous system. However, for most fibrous ma-
terials it is possible to calculate the radiative com-
ponent of thermal conductivity from Eq. (15) taking
only absorption into account.

The effective thermal-conductivity coefficient of
an orderless fibrous system can be calculated from
Egs. (1), (5), (6), (9), and (11). A comparison with
the experimental data shows satisfactory agreement.

NOTATION

A is the effective thermal conductivity of fibrous
systems, Ay is the thermal conductivity of the fibers;
Ay is the thermal conductivity of the interstitial gas;
m, is the fiber volume concentration; D is the fiber
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diameter; &' is the distance between fibers; 8,a, o are
the attenuation factor, absorption, and scattering coef-
ficients; & is the emissivity of the reflecting surfaces;
1 is the thickness of the fibrous sytem; and T is the
temperature of the fibrous system.
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